Liposomal Formulation Delivers Medication More Effectively

By Mayra Pierce


Nanotechnology is a branch of science that manipulates materials on a molecular and atomic level. Liposomes are artificially created microscopic bubbles composed of materials similar to human cell membranes called phospholipids, portions of which are alternately repelled or attracted to water. Liposomal formulation is a process that creates these structures for a more effective use in the delivery of medications.

The significance of these very small vesicular forms that are able to enclose molecules soluble in water became apparent soon after being introduced during the 1960s. Pharmacists and research scientists became keenly aware of their potential to improve methods of drug delivery when fighting cancer and other serious illness. They encourage more accurate targeting of malicious cells while avoiding issues that plague other forms of administration.

The concept they use is radically different because it does not depend of standard modes of absorption typical of IV or oral administration. Conventional chemical processes can make management of specialized drugs more difficult. They are indiscriminate in their toxicity, and affect healthy organs as well, resulting in unnecessary damage and more lengthy recovery. When delivered via liposomes, release of toxic medication can be better controlled.

The drug molecules encased within each structure are suspended in water and surrounded by an artificially or naturally created membrane. The formulation of designed liposomes turns them into ideal mechanisms for hydrophilic drugs, or those that are attracted to and become suspended in water. When prepared according to current methods, the structures exist in two primary types, unilammelar or multilammelar. There are subcategories that include different sizes.

The liposomes are made to surround the medications with membranes, and when activated release those molecules into other cells. This can be done by fusing the layers, causing them to interact with adjacent human cells, and releasing medication in the process. Other activation strategies include using specific chemical reactions to encourage molecular diffusion. The end result is a controlled, steady delivery.

This process is not only more effectively managed, but is also bio-compatible with human cells, and leaves no additional toxic residue. Some recently developed types of these capsules can be activated using ultrasound, which increases their efficacy in the locations where they are most needed. Others are dispensed via the respiratory system, and are directly deposited into the lungs and then slowly released, reducing overall toxicity.

It is still costly to manufacture these microscopic capsules for medical use. As continuing research produces a growing number of uses for this kind of nanotechnology, the overall expense will decline, but will not become cheap. Because this is relatively new technology in many ways, there are issues that still must be resolved. Some types of structures have experienced cellular leaking, and others have been affected by oxidation.

Like other technologies developed for medicine, liposomes have a growing commercial use. They are being touted as superior methods of delivering vitamin, mineral, and herb formulations, and some individuals today even create their own supplements. While those uses are controversial in some aspects, the creation of new medication delivery and activation systems continues to provide new hope for more effective treatments.




About the Author:



No comments:

Post a Comment